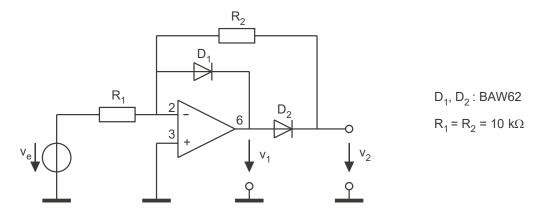
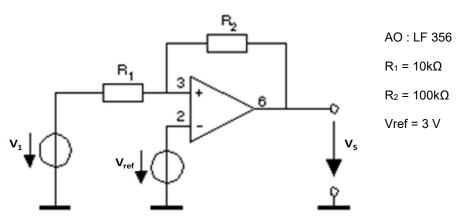

TP 4- AO / Redressement et Comparateur

1. Redressement-filtrage


- 1. Prévoir l'allure de la tension de sortie en supposant constante la chute de tension U_j aux bornes de la diode dans l'état passant.
- 2. Représenter sur un même diagramme u_G et u_S (théorique).
- 3. Déterminer les valeurs de C permises pour que l'ondulation sur u_S soit inférieure ou égale à 15 %. Choisir une valeur normalisée remplissant cette condition et calculer l'ondulation pour cette valeur.
- 4. Réaliser le montage. Observer us et us et expliquer les éventuelles divergences avec les prévisions.

2. Stabilisateur de tension par diode Zener


- 1. Dimensionner R et C en fonction des paramètres suivants : $u_{T \text{ eff}}$ = 15 V, I_{Zmin} = 5 mA, I_{L} \in [0-40 mA], U_{Z} = 12 V, $u_{C}(t) \ge$ 18 V
- 2. Calculer les puissances maxima dissipées dans R et Z. Choisir R en conséquence et vérifier la compatibilité de la diode Zener avec les caractéristiques imposées à ce circuit.
- 3. Réaliser le montage avec les éléments définis ci-dessus. Vérifier la cohérence des tensions u⊤ (à vide et en charge), uc et Uz observées avec les prévisions théoriques, en l'absence de la charge R_L.
- 4. Observer le comportement de la diode Zener à travers U_Z lorsque le courant I_Z varie (on prendra une résistance variable R_L = 470 Ω ou R_L = 1k Ω).

3. Redresseur sans seuil

- 1. Prévoir l'allure des caractéristiques de transfert $v_1 = f(v_e)$ et $v_2 = f(v_e)$
- 2. Esquisser l'allure des signaux $v_1(t)$ et $v_2(t)$ pour un signal d'entrée sinusoïdal de 100 Hz, d'amplitude 1 $V_{crête}$ et sans composante continue.
- 3. Réaliser le montage (Pour des questions de stabilité nous utiliserons le LM 741) et observer les signaux v₁(t) et v₂(t) dans le cas d'un signal d'entrée sinusoïdal sans composante continue et ceci pour différentes amplitudes de v_e, notamment lorsque v_{emax} < U_i, et à différentes fréquences.
- 4. Que se passe-t-il lorsque les deux diodes sont inversées par rapport au schéma donné ? Vérifier expérimentalement le résultat attendu.

4. Comparateur à seuils (bascule de Schmitt)

- 1. Prévoir l'allure de la caractéristique de transfert $v_s = f(v_1)$ et calculer les tensions de seuil V_{T1} et V_{T2} en supposant que VH = +15 V et VL = -15 V.
- 2. Quels sont les critères de choix de l'amplificateur opérationnel ?
- 3. Réaliser le montage (prendre pour v₁ un signal triangulaire de valeur maximal > V _{T1,2}).
- 4. Visualiser à l'oscilloscope et relever la caractéristique v_s = f(v₁) (XY). Vérifier la valeur des tensions de seuil V_{T1} et V_{T2} (utilisation des curseurs). Expliquer les éventuelles différences avec les prévisions théoriques.